
Diagnosis As Planning: Two Case Studies

P@trik Haslum and Alban Grastien
Australian National University & NICTA

firstname.lastname @anu.edu.au or @nicta.com.au

Abstract

Diagnosis of discrete event systems amounts to finding good
explanations, in the form of system trajectories consistent
with a given set of partially ordered observations. This prob-
lem is closely related to planning, and in fact can be recast as
a classical planning problem. We formulate a PDDL encod-
ing of this diagnosis problem, and use it to evaluate planners
representing a variety of planning paradigms on two realistic
case studies. Results demonstrate that certain planning tech-
niques have the potential to be very useful in diagnosis, but
on the whole, current planners are far from a practical means
of solving diagnosis problems.

Introduction
In automating the operation of complex technical systems,
automated monitoring and diagnosis are as important as au-
tomated planning and control.

Traditionally, the diagnosis task is to answer the question:
what is wrong? In model-based diagnosis, this means in-
ferring, from a system description and a set of observations,
whatmodethe system may be operating in: nominal, one of
a number of known fault modes, or an unknown fault mode
(e.g., de Kleer and Williams 1989). A typical example is the
diagnosis of an electronic circuit, where observations aretest
inputs paired with measured outputs, and a fault mode is a
subset of faulty components. In this setting, the system is
static: observations are assumed to all be generated by the
same mode, and the system imposes no order on them.

In contrast, diagnosis of dynamical systems may be posed
as the question: what has happened? That is, given a system
model and a (partially) ordered set of observations, the di-
agnosis task is to identify possible evolutions of the system
over time which would generate the given observations, in
an order consistent with that given (Cordier and Thiébaux
1994; McIlraith 1994). Crucially for our case studies, this
permits system models that are inherently non-deterministic,
even when operating correctly. In most cases, there are many
system histories consistent with observations. Thus, there is
a notion of preference over histories, and the diagnoser is
required to find one, some or all preferred explanations.

There is a close connection between diagnosis of dynam-
ical systems and planning (noted by Cordier & Thiébaux,
1994, and McIlraith, 1994), as the task of generating a (most
preferred) system event history to match given observations

can be viewed as a plan generation problem. In spite of this,
the two fields have developed quite different methods, with
much work in diagnosis exploiting off-line analysis of the
system model to enhance on-line diagnosis, e.g., by build-
ing a system-specific diagnoser (Sampath et al. 1996), iden-
tifying if sufficient conditions for using faster methods hold
(e.g., Basile et al. 2003), or decentralising the work of diag-
nosis (e.g., Pencolé and Cordier 2005). The SAT-based di-
agnoser by Grastien et al. (2007), inspired by the use of SAT
for planning and model-checking, is one of a few examples
of transfer of techniques between the two fields. To deter-
mine if methods that have been successful at solving plan-
ning problems will be so also for diagnosis of discrete event
systems, we formulate a reduction of the diagnosis problem
to planning, i.e., an encoding of the problem in PDDL. It is
of course unlikely that such a direct problem translation is
the most effective way of applying planning techniques to
diagnosis problems, but it is a very useful tool to evaluate
a spectrum of planning methods, due to the availability of
diverse domain-independent planning systems.

Comparing the effectiveness of planning techniques with
existing diagnosis methods raises further challenges. First,
there is not one single diagnosis problem. The problem we
consider can be characterised aspassive, non-exhaustivedi-
agnosis (of discrete event systems). In contrast, much work
concerns exhaustive diagnosis (i.e., finding all preferredex-
planations consistent with the facts), or active diagnosis
(where the diagnoser can take actions to control which ob-
servations are made; cf., e.g., Kuhn et al. 2008). These are
different problems, and require different solutions. Second,
the diagnosis research community does not have the same
focus on empirical evaluation over common sets of bench-
marks as in planning. Although diagnosis researchers de-
velop domain-independent methods, very few “off the shelf”
implementations of domain-independent diagnosis systems
are available, and also very few benchmark problem sets.

As a step towards remedying this situation, we formalise
two realistic diagnosis problems1, which we use to evaluate
the effectiveness of planners representing several different
paradigms. The first case study problem comes from a UAV
research project, and is a fault detection problem. The sec-

1To the extent that we are permitted, we will make these for-
malisations available.



ond comes from the domain of electric power transmission,
where we aim to do “intelligent alarm processing”, by min-
imising the number of “unexplained” observations. In both
cases, the purpose of diagnostic reasoning is to support the
situational awareness of a human decision maker. Thus, the
diagnoser must reliably provide information that is timely
and correct. The meaning of “timely” is not precisely de-
fined, but as a rule of thumb, solutions should be available
within a few tens of seconds. Results are mixed: For the first
case, a combination of planning techniques present a viable
solution. In the second case, the SAT-based diagnosis en-
gine performs better than the best planners, but no approach
quite meets the demands of the application.

We are aware only of one similar study. Sohrabi, Baier
& McIllraith (2010) proposed an encoding of discrete event
diagnosis as a planning problem with temporally extended
goals (via the situation calculus), and tested the ability of
a heuristic search planner supporting such goals to solve
a diagnosis problem. (They also used our encoding to ap-
ply the FF planner, which performed better.) The problem
they used, however, is an artificial example (introduced by
Grastien et al. 2007), and the results they observed do not
generalise to our case study problems.

Diagnosis of Discrete Event Systems
The dynamical systems we consider are modelled as discrete
state, discrete event systems. This fits naturally with classi-
cal planning models. In principle, there is no obstacle to
applying the same reduction to diagnosis of timed or hybrid
systems – indeed, we construct both a timed and a classical
model for our second case study – but the range of planners
capable of dealing effectively with such problems is much
narrower. In this section, we present a brief review of the
discrete event system diagnosis problem. Examples, and de-
tails of the reduction to planning, will be described along
with our two case studies in the following sections.

A finite discrete event system consists of a finite collec-
tion of state variables, each with a finite domain of values,
and a finite set of transitions. Each transition has a precon-
dition and a deterministic effect on some subset of the state
variables. (Other variables keep their values.) Although
each transition is deterministic, the system model as a whole
is generally non-deterministic, in the sense that in any state,
several transitions may be applicable and there is no deter-
ministic rule that dictates which is taken. For modelling con-
venience, it is common to divide the system up into com-
ponents, each an instance of a component type which de-
fines variables and transitions in a schematic way. To model
non-trivial behaviour the components must be able to inter-
act, using some communications mechanism such as shared
variables, message queues or synchronised transitions.

Some transitions emit one or moreobservable events.
There can be several transitions emitting the same event.
Given a system model, a set of possible initial system
states, a set of observations,O, each labelled with an event
event(oi), and a partial order≺ on O, a discrete-event di-
agnosisis a sequence of transitions, applicable from some
initial state, such that the events emitted by the sequence
correpond one-to-one with the set of observations, and the

order of these events induced by the sequence of transitions
is consistent with the given partial order on the observations.
In both our case studies, observations are time stamped, but
time stamps are not precise or accurate enough to totally or-
der the observations. Therefore, we assume only a partial
order. In any case, this does not complicate the formulation
of the diagnosis task as a planning problem.

In the models we consider, transitions are divided into
“good” and “bad”, and the objective is to minimise the num-
ber of bad transitions occurring in the explanation sequence.
(The bad transitions are often referred to asfaults, but this
terminology is a bit misleading in the case of alarm pro-
cessing.) In planning terms this corresponds to the objective
of minimising total cost, where only fault transitions havea
non-zero cost. In the models we construct, the bad transi-
tions are all equally bad, and therefore all have unit cost, but
obviously varied costs could be used to express degrees of
badness. For example, if we know the probability of each
fault transition occurring, we can assign a cost proportional
to its negative logarithm to obtain a most likely explanation.
Other preference criteria are also conceivable.

We can also consider more stringent notions of diagnosis:
In planning, adisjunctive action landmarkis defined as a
set of actions at least one of which must appear in any valid
plan (Helmert and Domshlak 2009). Analogously, we may
consider a set of fault transitions at least one of which must
occur in any system history consistent with the observations.
This is more informative, since it identifies a – albeit dis-
junctive – set of faults that must have happened, rather than
a (minimum cost) set of faults that may have happened. It
also has some similarity with the notion ofconflictsin static
system diagnosis (Reiter 1987). A conflict is a set of state-
ments about the system mode that is inconsistent with the
system model and the set of observations. Thus, every di-
agnosis must include the negation of at least one statement
from each conflict set. For static systems, there is a one-to-
one correpondence between minimal diagnoses and minimal
hitting sets over the set of all minimal conflict sets. For dis-
crete event systems, however, such a correspondence does
not hold in general.

When modelling a system for diagnosis we have the free-
dom to trade off the fidelity of the model (and thus its
complexity) and its diagnostic power. Abstracting away
some aspects of the real system means only that the model
may allow more explanations of a given set of observations
(some of which may not correspond to possible system be-
haviours), and thus fewer certain conclusions. We will see
this repeatedly in modelling our case study problems.

Intelligent Alarm Processing
The availability of remote sensing and control facilities
means that today very large industrial systems, such as
power or telecommunications networks, can be overseen and
managed by a few operators in a central location. Fault con-
ditions in such large systems frequently give rise to “alarm
cascades”, where the original fault causes a range of sec-
ondary abnormalities, all of which generate multiple alarms,
thus quickly overwhelming operators’ attention. This prob-
lem has been recognised for some time (e.g., Prince, Wol-



lenberg, and Bertagnolli 1989), and there has been a lot of
work on the use of AI techniques to aid operators by filter-
ing, prioritising and synthesising alarms. This is known as
“intelligent alarm processing”.

Two approaches to the problem can be distinguished: One
is to view it as pattern recognition, i.e., identifying “situ-
ations” or “episodes”, that are meaningful to operators, in
the alarm stream. This has been developed using meth-
ods such as neural networks and chronicles (e.g., Dousson
1996). The other is to view it as root cause analysis, i.e.,
finding a smaller set of “root cause events” that together
would cause the observed alarms. From this perspective,
there is no technical difference between alarm processing
and diagnosis: the difference lies in the model, and in how
it is interpreted. The root cause events, which we seek
to minimise, are “unexplained” but not necessarily faults.
Model validity means only that for those alarms which are
explained, the explanations are correct. It is acceptable,if
undesirable, to leave any alarm unexplained. Most work on
this approach uses a static system model (e.g., Dijk 1992;
Larsson 2009), relying onad hocmethods to divide the flow
of alarms into sets for analysis. (An exception is the method
described by Guo et al., 2010, which uses a system model
based on a temporal constraint network and computes win-
dows for analysis on the basis of the time constraints.) We
formulate it instead as discrete event diagnosis, which allows
for potentially more powerful explanatory models.

First Case Study: Detecting Missing Events
Input data for our first case study is a set of event logs
recorded on the ground during test flights of an autonomous
unmanned helicopter (UAV) in 2004 as part of the WITAS
project.2 The logs contain events issued by the UAV control
system. The high-level control system consists of dynami-
cally created instances of concurrent software components,
called “task procedures” (TPs), which perform mission tasks
(e.g., navigating the UAV to a position) by a combination of
issuing commands to the low-level (real-time) control sys-
tem, calling on-board “services” (e.g., the path planner),and
invoking other TPs to perform subtasks. Events are sent by
TPs, e.g., to signal when a task has been completed, and are
tagged with a unique identifier of the sending TP instance.
Some events also include additional data. The low-level con-
trol system sends events to signal changes in state and in
response to commands (e.g., completed or failed).

Due to occasional data overload and loss of telemetry,
logs are not complete: some events are missing. The di-
agnosis task is to detect when such gaps exist. Ideally, we
would also like to infer which events are missing, but it is in
most cases not possible to do this uniquely.

Formulation as a Planning Problem
TPs are finite state machines augmented with data variables
and bits of code executed at transitions. TPs are determinis-
tic, but because we abstract away many details, our models

2A detailed presentation of the WITAS project and the architec-
ture of the control system is provided by Dohertyet al. (2004). See
alsohttp://www.ida.liu.se/ext/witas/.

of them are non-deterministic finite automata. For example,
the sequence of events generated by theFly3D TP, which
flies the UAV along a given path, depends on the number
of waypoints in the path. By leaving the path out of the
model, the number of iterations of the TPs main loop be-
comes non-deterministic. This is an example of the trade-off
between model complexity and diagnostic power: if more
details were included we could, in some cases, detect miss-
ing events that are not detectable with the current model.

Encoding automata with predicates and actions in PDDL
is straightforward. Some transitions are synchronised, mod-
elling communication between TPs, but since synchronised
transitions involve a fixed number of automata, this can be
simply modelled by an action that conjoins the preconditions
and effects of the participating transitions. Synchronising
an unbounded number of simultaneous transitions requires
a more elaborate encoding. (An example of a PDDL en-
coding of general inter-process communication using mes-
sage queues is described by Hoffmann et al., 2006, for the
Promela domain.) The set of TP identifiers is unbounded,
but when creating a planning problem instance for a partic-
ular event log, we include only those identifiers mentioned
in the log. (In one instance, it was necessary to include an
identifier that does not appear in the log for the problem to
be solvable. While there are a number of ways that such
missing identifiers could be inferred, we have no general so-
lution to this issue.) Finally, each log begins at the start of
a mission, with the system in an idle state. Thus, we can
assume a single, fully known initial state.
Encoding Observations Some transitions emit an observ-
able event. Recall that in the discrete event diagnosis prob-
lem, we have a set of observations,O = {o1, . . . , on}, each
labelled with an eventevent(oi), and a partial order≺ on
O, and we seek a transition sequence that reproduces the
observations. This can be formulated as a planning goal as
follows: Each observationo can be in one of three states:
(future o), meaning that some observation ordered beforeo
is yet to be made;(pending o), meaning thato can be the
next observation made; and(observed o), meaning thato
has been generated. The initial state is(pending o) if o is
minimal in the order on observations and(future o) other-
wise. The goal is(observed o), for all o ∈ O. Each action
corresponding to a transition that emits an observable event
e is given an additional parameter?o; its precondition is ex-
tended with(pending ?o) andevent(?o) = e, and its effect
with (not (pending ?o)) and(observed ?o). An action corre-
sponding to several synchronised transitions that emit events
will have one such observation parameter for each event.
These parameters are required to be distinct. To ensure that
observations are made consistently with the given order, an
observationo can change state from(future o) to (pending o)
only when all observations precedingo have been made. We
encode this with an action,(advance-to o), whose precondi-
tion is (future o) and(observed o′) for all o′ ≺ o, and whose
effect is(not (future o)) and(pending o).

Proposition 1 This encoding is correct, in the sense that
any valid plan will generate each observation inO exactly
once, in an order that is consistent with the given order≺.



Proof: For each observationo ∈ O, a valid plan must con-
tain at least one action that exchanges(pending o) for (ob-
served o), and no more than one since it is not possible
to reverse the exchange. By construction, this action cor-
responds to a transition that emitsevent(o). Suppose two
observationso′ ≺ o are generated in an inconsistent order,
i.e.,o beforeo′: Sinceo is not minimal in≺, (future o) holds
in the initial state, and the only action that may exchange(fu-
ture o) for (pending o), which is a precondition of any action
generatingo, is (advance-to o). But the precondition of this
action includes(observed o′), so it cannot be applied before
o′ has been generated. 2

A slightly simpler encoding would distinguish only between
observations made and not made, with the ordering condi-
tion part of the precondition of each action emitting an ob-
servable event. However, distinguishing future and pending
observations allows using observations as “time stamps”,
which will be useful in modelling our second case study.

Events in the flight logs are stamped with the time that
the event was generated. The order on observations is still
partial, because events separated by too small a margin (less
than1/100th of a second) cannot be reliably ordered. It is,
however, a special kind of partial order, namely, a sequence
of sets of mutually unordered elements.

Encoding Faults The faults that we wish to detect are lost
events. Thus, for every transition that emits an observable
event, the model has an identical fault transition without any
observation. In the PDDL formulation, actions correspond-
ing to fault transitions have a cost of1 while all non-fault
actions have a cost of zero, and the objective is to minimise
the cost of the plan. In particular, a zero-cost plan exists iff
the observations can be explained without missing events.

Experiments and Results
The data set comprises 8 logs, ranging in length from 41
to 273 observations. Five are complete, while three have
between 5 and 17 missing events. The number of model
components (i.e., TP instances) ranges from 3 to 26, and
the number of states per component between 20 and 129.
To obtain a larger set of problems for experimentation, we
take prefixes of these logs, of increasing length, and remove
randomly chosen events up to a desired total. This way, we
obtain 196 instances, 36 of which are complete.

Since the main task is to decide if a zero-cost plan exists, it
is natural to use planner that guarantees minimal-cost plans.
For this we use the Fast Downward implementation of A*
search with the admissible landmark-cut heuristic (Helmert
and Domshlak 2009).3 This planner finds zero-cost plans
for all 36 instances without missing events: 30 problems are
solved in less than 10 seconds, but the longest runtime for
a problem is over 150 seconds. It does not solve all 160 in-
stances with missing events. However, it does prove a lower
bound on cost greater than zero – thusdetectingthat some
event must be missing – for all but one of these problems,

3We replaced the Fast Downward translator component with a
different translator. Except where otherwise noted, experiments
were run with 30 minutes CPU time and 2Gb memory limits.

never taking more than 3 seconds to do so. (The one prob-
lem were it fails to detect missing events actually admits a
zero cost solution, so in this case the blame lies with the
model.) In fact, only applying the landmark-cut heuristic to
the initial state is sufficient to detect some event is missing
in 150 instances (including the three full-length logs).

We also use a cost-ignorant planner: greedy best-first
search using the FF heuristic (also implemented in Fast
Downward). It solves all but two problems, but generates
false positives, i.e., plans of non-zero cost, for 35 of the 36
logs without missing events. However, when run on a model
without fault transitions, and thus forced to find only zero-
fault plans, the planner solves all instances that admit such
solutions, even within a 30 second time limit. In summary,
using the combination of two one-sided tests – an admissible
heuristic for fault detection and a fast planner for “no-fault
detection” – seems to be a viable approach, though it fails to
reach a decision for a few problems.

The SAT-based diagnoser (Grastien et al. 2007) suffers
from the fact that explanation trajectories are very long,
and fails to solve any problem with more than 100 obser-
vations. The SAT-based planner that we tried (Mp, by Rin-
tanen 2010) exhibits the same behaviour, though it scales a
little further, solving one problem with 170 observations.

Second Case Study: Alarm Processing
Input data for our second case study is an alarm log from the
operations center of TransGrid, the company that owns and
operates the electricity transmission network in NSW and
the ACT, Australia. The log contains alarms generated by
automatic equipment – switch gear, voltage and power sen-
sors and regulators, etc. – located throughout the transmis-
sion network, as well as commands issued by the operators.
It covers roughly fifteen hours: the first two thirds are rou-
tine operation, then a major fault situation arises and the rest
of the log chronicles the operators’ efforts to reconfigure the
network to restore service. Figure 2 gives an indication of
how alarms are distributed over time.

Our aim is to do “intelligent” alarm processing, which be-
gins with finding a consistent system history with the fewest
“unexplained” events. What is an unexplained event can de-
pend on context. For example, an alarm indicating that a
circuit breaker has opened may be explained by the obser-
vation that it was commanded to open a short time earlier.
Four breakers isolating a line (cf. figure 1) opening almost
simultaneously may be explained by an electrical fault on
the line triggering the line protection relays, if the line was
energised. In this case, the occurrence of the line fault is it-
self an unexplained (and unobservable) event. If no reason
for the breaker opening is discernable within the model, the
alarm remains unexplained.

The log contains 2246 entries (alarms and commands) in
total. However, our model considers only a subset of alarm
types and restricted to these the total number of observations
is only 731. The model is also overly simplified in some
other respects (discussed below); to achieve a level of alarm
processing that would truly benefit end users will require a
much more detailed and comprehensive model. This, how-
ever, is not a limitation of the approach of formulating alarm



Figure 1: Schematic of a part of the transmission network,
showing a (long-distance) line and its isolators.

processing as a diagnosis problem, or of reducing this to a
planning problem: the limitation is in our current knowledge
of the system, and in the ability of existing planners to rea-
son with a more detailed model.

Formulation as a Planning Problem

We model components of the system as non-deterministic fi-
nite state machines, and use a combination of synchronised
transitions and shared variables to model their interactions.
The dynamics of the system depend a great deal on the prop-
agation of electricity through the network. Most of this we
abstract away from the model, since to capture it would re-
quire a complex hybrid continuous/discrete model. More-
over, the electrical state of any component can depend on
network-wide topological properties, such as the existence
of a conducting path to an active generator. Such conditions
could be modelled using PDDLs derived predicates, as done
by Hoffmann et al. (2006) for the PSR domain. However,
the range of planners that support this feature is very lim-
ited, and the size of the network – especially coupled with
the incomplete initial state – mean that such a formulation
would most likely be intractable.

Therefore, the model includes only local topological in-
formation, and reasoning about electrical properties is lim-
ited to what can be inferred from this. For example, the
circuit breakers in figure 1 are all marked as being isola-
tors of the line. Any transition that changes the state of one
of these breakers to “open” flags that the isolation state of
the line may have changed. This enables the line to transi-
tion to being isolated (and having changed), if all isolators
are now open. When the line has changed to the isolated
state, we know it is not energized, and this can explain an
alarm signalling voltage on the line dropping to zero shortly
thereafter. Again, this is an example of trading reduced ex-
planatory power for a a simpler, but still valid, model. For
example, the line may also become de-energized as a result
of all generators currently feeding it switching off, but this
explanation is not discernible in our model, so in that case
the voltage drop alarm would go unexplained.

Because the model does not use global relations, such as
connectivity, the set of components that can influence any
given component is bounded. Thus, when creating a plan-
ning problem instance for a particular event log, we include
only components mentioned in the log, or directly related to
those mentioned in the log. This reduces the size of prob-
lems significantly: the whole network has over 10,000 com-

ponents in the primary electrical system alone, while the
largest problems we consider contain a few hundred.

Encoding an Incomplete Initial State In this study, we
have no knowledge of the initial state.4 However, a diagno-
sis is a consistent system history starting fromsomepossible
initial state, so we can let the planner choose the values of
initially unknown state variables (as noted by Sohrabi et al.
2010). This is done by initialising unknown variables to an
“unknown” value and including actions that allow them to
be set, once, to any value. Variables may remain unknown
as long as no action that depends on them is taken.

Encoding Time-Dependent Conditions As illustrated by
many of the examples above, time plays an important role
in the dynamics of the electricity network, and it is therefore
important to include some time constraints into the system
model. For example, if a breaker opens, causing a line to
become isolated, a voltage drop alarm may be emitted. But
if so, we expect that alarm to follow within a few seconds
of the breaker opening: a change in isolation state cannot
explain a voltage drop that takes place hours later. In other
words, the line component should remain in the “changed to
isolated” state only for a limited time, and then transitionto
a different state (although still isolated). Similarly, a fault
causing protection to trip should cause all isolation breakers
to open within a second of each other – if they don’t, protec-
tion tripping the breakers is not a plausible explanation.

We can model such time constraints using the durative
actions of PDDL2.1. However, we can also make use of the
observations as “time stamps”, that way obtaining a classical
planning model. This is advantageous because the classical
model is accessible to many more planners. We found only
one planner capable of solving the timed PDDL2.1 model,
and even that planner performs better on the classical model!

As in our first case study, observations in the event log
are time stamped (though in this case only to one seconds
precision). Thus, for any pair of observations we know the
delay,δ(oi, oj) = τ(oj) − τ(oi), between them, and order
the observations when that delay exceeds a fixed threshold:
oi ≺ oj iff δ(oi, oj) > T . (We useT = 0, i.e., we order
observations whenever there is a noticable difference in their
time stamps. A greater threshold is appropriate when time
stamps are not accurate.)

The encoding of time constraints in the classical model
is most easily explained by an example: Suppose(open-
isolator ?b ?l ?o) is the action of opening breaker?b, which
is an isolator of line?l (?o is the observation to be matched
by the event, signalling the breaker opening, emitted by the
transition). As described above, besides changing the state
of ?b to open, this action adds a proposition(iso-maybe-
chgd ?l), representing that the isolation state of?l may have
changed. Now, we want to model that this proposition will
only persist for a fixed time (say, 10 seconds). To achieve
this, we add to the predicateiso-maybe-chgd an extra pa-

4In actual application, this would likely not be the case. The
state of network devices is polled on a regular basis, and even if
that information is not used, the log of past events would indicate
the state of many components. The case of an unknown initial state
may be thought of as a “cold start” of the alarm processor.



rameter?o, to be filled by an observation that is “current”
at the time when(iso-maybe-chgd ?l ?o) is made true. This
way, the observation acts as a time stamp for the proposition.
An observation is current if(pending ?o) is true. (Action
(open-isolator ?b ?l ?o) already has an observation argument,
which must be pending when the action takes place. To any
action that adds a transient condition and which does not
emit an observation, we must add such an observation argu-
ment.) Every occurrence ofiso-maybe-chgd in the precon-
dition of an action must now existentially quantify the extra
observation parameter. (For simple conjunctive action pre-
conditions, existential quantification is equivalent to adding
an extra action parameter.) To ensure that(iso-maybe-chgd
?l ?o) does not remain true beyond its time limit, we add to
each(advance-to o) action the effect(not (iso-maybe-chgd ?l
o′)) for eacho′ such thatδ(o′, o) exceeds the limit.

Proposition 2 This encoding is correct, in the sense that
any valid plan can be scheduled in a way that respects both
observation time stamps and the maximum time lag con-
straint, to within the thresholdT .
Proof: Transitions are instantaneous. Schedule each transi-
tion ti that generates an observationo exactly in the middle
between the earliest and latest time of all observations that
are pending whenti takes place. They cannot be more than
T apart, and henceti’s scheduled time is no more thanT/2

from τ(o). Supposeti adds a transient proposition,p(o),
with time window w (o is the observation that serves as
time stamp forp). If ti is not the transition that generates
o, schedule it at the time of the next transitiont′ that gen-
erates an observationo′. Sinceo ando′ are both pending
at this point,ti’s scheduled time is no more thanT/2 from
τ(o). Supposetj requiresp(o): the scheduled time of any
transitiont′ betweenti and tj in the sequence which gen-
erates an observationo′ is no more thanT/2 + w later than
τ(o) (as otherwise(advance-to o′) would negatep(o)). Thus
it is possible to scheduletj no later thanT + w afterti. 2

This encoding can be over-constraining, in the sense that in
some system models there could be trajectories consistent
with time constraints that do not correspond to valid plans.
However, this does not happen in our model.

The encoding has some similarity to the use of “envelope”
actions in temporal modelling, as suggested by Fox et al.
(2004). Indeed, our PDDL2.1 model uses precisely such
envelope actions to achieve the same effect.

Experiments and Results
No system that we tried was capable of finding a solution to
the problem corresponding to the complete event log. How-
ever, it may be argued that an alarm processor should only
have to consider windows of time spanning sets of causally
related observations. To obtain a set of problem instances
for evaluation, we divide the event log up in two ways: (1)
by splitting it into “chunks” separated by intervals of at least
1 minute during which no alarm is observed, and (2) by tak-
ing a 1 minute time “window” starting from each distinct
alarm time stamp. Figure 2 shows the distribution of obser-
vations over the “chunk” problems: while most have only

Time

# 
A

la
rm

s
0

20
40

60
80

10
0

14
0

Figure 2: Number of observations in each “chunk” of the
log (bar width and spacing is proportional to time). Counts
include only the subset of alarm types included in the model.

a few observations, the alarm cascade that results from the
fault incident creates a few large spikes. Those are precisely
the times when intelligent alarm processing is most needed.

For each subsection of the log, we estimate the number of
unexplained alarms that would result without processing by
counting all except commands and command acknowledge-
ments. Removing problems where the highest known lower
bound matches this estimate leaves 129 problem instances
in which there is scope for alarm processing to make a non-
trivial improvement. Table 3(a) summarises the number of
instances solved within the time limit, grouped by problem
size as measured by the number of observations. The sys-
tems we compare are:
• The cost optimal A*/LM-Cut planner.
• Gamer (cost optimal; Edelkamp and Kissmann 2008).
• LAMA (Richter and Westphal 2010).5

• Greedy best-first search using the cost-ignorant FF heuris-
tic (Fast Downward implementation). To find better plans,
we also use two variants: one continues search past the
first solution and one runs many repeated searches, ran-
domising decisions that are otherwise made arbitrarily.

• Mp (a heuristically-enhanced SAT-planner, also cost-
ignorant; cf. Rintanen, 2010).

• Crikey, a heuristic-search based temporal planner (Coles
et al. 2008), run on both the timed (PDDL2.1) and the
classical model.

• The SAT-based diagnosis engine (Grastien et al. 2007).
Figure 3(b) shows the distribution of the quality of non-
optimal solutions. LAMA, and our two GBFS/FF variants,
may find better solutions given more time. In figure 3(b),
we separate the quality of the first solution, the best found
within 30 seconds, and the best solution found at all.

Results are quite predictable: The cost-optimal planners
cannot solve large problems, while the cost-ignorant plan-

5LAMA avoids issues related to zero-cost actions in search by
uniformly adding 1 to all action costs. To better preserve the dis-
tinction between “good” (explained) and “bad” (unexplained) tran-
sitions through this transformation, we scale up the cost of bad
transitions to 10 in the input to this planner. (The plans it finds are
of course evaluated using same costs costs as for all other planners,
i.e., zero for good and one for bad transitions.) If we do not apply
scaling, LAMA is slightly more efficient, but finds worse (first and
best) solutions.



# Observations
1-5 6-10 11-2021-3031-5051-100>100

# Problems 36 43 35 6 4 4 1

# Solved by
A*/LM-Cut 36 43 30 0 0 0 0
Gamer 36 43 31 0 0 0 0
LAMA 36 43 35 6 4 2 0
GBFS/FF 36 43 35 6 4 4 1
Mp 36 43 35 6 4 4 1
Crikey (timed) 36 40 19 6 2 1 0
Crikey (strips) 36 43 35 6 4 2 0
Diagnoser 36 43 35 6 4 4 0

# Optimal 36 43 35 1 1 0 0
0 <= 0.5 < 1.0 1.0 <=1.5 <= 2.0 > 2.0

LAMA (best)
LAMA (30 sec)
LAMA (first)
GBFS/FF (first)
Mp
Crikey (strips)
Crikey (timed)
SAT Diagnoser

Cost (scaled)

F
re

qu
en

cy
 (

%
)

0
20

40
60

80

(a) (b)

Figure 3: (a) Number of alarm processing problems solved. Problems are grouped by the number of observations, as a measure
of size. The last line shows the number of problems for which optimal solution cost is known. (The two optimal planners solve
slightly different sets of problems. There are also some cases where a solution found by one of the other systems matches the
highest proven lower bound.) (b) Distribution of the cost ofsolutions found by non-optimal systems, scaled to the interval
between the lower bound and the cost of the trivial solution,with no alarm processing (i.e.,0 means equal to the lower bound,
1 means equal to the trivial solution).

ners, though fast, find solutions that are often as bad as using
no alarm processing at all, and sometimes even worse than
that. LAMA, and continued GBFS, strike a balance between
these extremes, finding good solutions quickly most of the
time. However, both fail to find improving solutions for
the largest instances. Repeated GBFS with randomisation
is generally worse, but is the only method to find a solution
better than the trivial one for the largest instance. The diag-
noser solves all problems but one, though somewhat slowly.
It produces minimal-cost solutions, but because it is based
on a SAT encoding, these are only optimal w.r.t. a bound
(on the number of “steps” between observations), which was
fixed in this experiment. However, no other solver finds a
better solution for any instance.

We also measure the impact of incomplete knowledge of
the initial state, by running the optimal planners on instances
with complete initial states (taken from the solutions found
by the diagnoser). In this setting, the A*/LM-Cut planner
solves an additional 13 problems and Gamer an additional
6, but still neither planner solves any problem with more
than 50 observations.

Discussion & Conclusions
We summarise our findings by discussing three questions:

Are the case study problems solved? For our first case
study, the combination of two one-sided tests, viz. using an
admissible heuristic such as the landmark-cut procedure to
detect event loss and running a fast planner on a fault-free
model to identify loss-free scenarios, seems to be a viable
approach (though it does not decide every problem).

For intelligent alarm processing, existing approaches use

either very simple system models (most not even including
any notion of time) or lack capability to choose the best
among competing explanations. In contrast, formulating it
as a discrete event diagnosis problem allows for minimisa-
tion of unexplained events over very expressive system mod-
els. On the other hand, it is clear that this problem cannot yet
be solved efficiently: Planners that deliver solutions quickly
find solutions that are often as bad as using no alarm process-
ing at all. The diagnoser produces high quality solutions, but
is still too slow to be practical. LAMA makes a valiant at-
tempt to balance fast plan generation and the quality of plans
found, and does produce fairly good solutions, even within
a 30 second time limit. However, it, and the other iterated
search methods we tried, fail to find a solution better than the
trivial for the problems with the highest number of alarms.
Since those represent precisely the situations when effective
alarm reduction is most sorely needed, we cannot call this an
acceptable performance overall. It must also be remembered
that our model is highly simplified, and covers only a subset
of alarm types. To achieve the level of alarm filtering and
synthesis that would truly benefit end users we would need
a much more sophisticated model, placing a higher compu-
tational burden on the system used to solve it.

What can planning technology contribute to discrete
event diagnosis? The question we seek to address is if
and how the techniques that have been successful in solv-
ing planning problems can be effectively brought to bear on
the problem of discrete event system diagnosis. To this end,
we devised a general reduction of this diagnosis problem to
planning, and used it to test a variety of planning approaches.

It is not so easy to identify the “state of the art” in discrete



event diagnosis, for several reasons: what are reasonable as-
sumptions and what is a useful diagnosis differs between ap-
plications, and quantitative data on the relative performance
of different approaches is scarce. Among approaches pro-
posed in the literature for the kind of problem we consider,
many rely on expensive off-line preprocesing of the model,
making them unusable for our first case study, where the set
of components is dynamic, and severely impractical for the
second, where the complete system has some 10,000 com-
ponents. Decentralised diagnosis methods (e.g., Pencolé and
Cordier 2005) may be usable for the second case study.

Nevertheless, we have shown that there are planning tech-
niques, such as the use of an admissible heuristic to identify
necessary fault events, which have not previously been ap-
plied to diagnosis problems and which show enough promise
to merit further development. On the other hand, it is also
clear that direct reduction to planning is not a universal so-
lution to discrete event diagnosis.

What are the implications for planning research? We be-
lieve that our case study problems are interesting and chal-
lenging also for planning, since they highlight some issues
not commonly encountered in other benchmark domains.

One such issue is the essential requirement of taking into
account action costs. It has been noted (e.g., by Richter and
Westphal 2010) that in many benchmark domains, planners
that ignore action costs frequently find solutions as good as
– sometimes even better than – those found by planners that
pay attention to cost and try to minimise it, and that planners
of the former kind have an advantage in efficiency. Like-
wise, Sohrabi et al. (2010) report that cost-ignorant planners
always find near-optimal solutions for the artificial exam-
ple problem they consider. The problems we study clearly
demonstrate that this phenomenon is an artefact of those par-
ticular problem domains, not a universal rule.

Acknowledgements
We thank TransGrid and the LiU UAVTech group for their
permission to use the data, and Sylvie Thiébaux for many
helpful discussions. This work was supported by ARC
project DP0985532. NICTA is funded by the Australian
Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Ex-
cellence program.

References
Basile, F.; Chiacchio, P.; and De Tommasi, G. 2003. An
efficient approach for online diagnosis of discrete event sys-
tems.IEEE Trans. on Automatic Control54(4):748–759.
Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Planning
with problems requiring temporal coordination. InAAAI’08.
Cordier, M., and Thíebaux, S. 1994. Event-based diagnosis
for evolutive systems. InDX’94, 64–69.
de Kleer, J., and Williams, B. 1989. Diagnosis with behav-
ioral modes. InIJCAI’89, 1324–1330.
Dijk, H. 1992. AI-based techniques for alarm handling.Int’l
Journal of Electrical Power & Energy14(2–3):131–137.

Doherty, P.; Haslum, P.; Heintz, F.; Merz, T.; Persson, T.;
and Wingman, B. 2004. A distributed architecture for in-
telligent unmanned aerial vehicle experimentation. InProc.
7th Int’l Symp. on Distributed Autonomous Robotic Systems.
Dousson, C. 1996. Alarm driven supervision for telecom-
munication network: II – on-line chronicle recognition.An-
nals of Telecommunications51(9-10):501–508.
Edelkamp, S., and Kissmann, P. 2008. GAMER: Bridging
planning and general game playing with symbolic search. In
IPC 2008.
Fox, M.; Long, D.; and Halsey, K. 2004. An investigation
into the expressive power of PDDL2.1. InECAI’04, 338–
342.
Grastien, A.; Anbulagan; Rintanen, J.; and Kelareva, E.
2007. Diagnosis of discrete-event systems using satisfiabil-
ity algorithms. InAAAI’07.
Guo, W.; Wen, F.; Liao, Z.; Wei, L.; and Xin, J. 2010.
An analytic model-based approach for power system alarm
processing employing temporal constraint network.IEEE
Trans. on Power Delivery25(4):2435–2447.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS’09.
Hoffmann, J.; Edelkamp, S.; Thiébaux, S.; Englert, R.; Li-
porace, F.; and Trüg, S. 2006. Engineering benchmarks
for planning: the domains used in the deterministic part of
IPC-4. Journal of AI Research26:453–541.
Kuhn, L.; Price, B.; de Kleer, J.; Do, M.; and Zhou, R. 2008.
Pervasive diagnosis: The integration of diagnostic goals into
production plans. InAAAI’08, 1306–1312.
Larsson, J. 2009. Real-time root cause analysis with multi-
level flow models. InDX’09.
McIlraith, S. 1994. Toward a theory of diagnosis, testing
and repair. InDX’94, 185–192.
Pencoĺe, Y., and Cordier, M. 2005. A formal framework
for the decentralised diagnosis of large scale discrete event
systems and its application to telecommunications networks.
Artificial Intelligence.
Prince, W.; Wollenberg, B.; and Bertagnolli, D. 1989. Sur-
vey on excessive alarms.IEEE Trans. on Power Systems
4(3):950–956.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence32:57–95.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks.Jour-
nal of AI Research39:127–177.
Rintanen, J. 2010. Heuristics for planning with SAT. In
CP’10, 414–428.
Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen,
K.; and Teneketzis, D. 1996. Failure diagnosis using
discrete-event models.IEEE Trans. on Control Systems
Technology4(2):105–124.
Sohrabi, S.; Baier, J.; and McIlraith, S. 2010. Diagnosis as
planning revisited. InKR’10.


